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Abstract. The surface free energies, interfacial tensions and correlation lengths of the
Andrews—Baxter—Forrester models in regimes Il and IV are calculated with fixed boundary
conditions. The interfacial tensions are calculated between arbitrary phases and are shown to be
additive. The associated critical exponents are given byo2 = 1 = v with v = (L + 1)/4

in regime Il and 4— 2as = 1 = v with v = (L 4+ 1)/2 in regime IV. Our results are obtained

using general commuting transfer matrix and inversion relation methods that may be applied to
other solvable lattice models.

1. Introduction

There has been a recent convergence of interest in statistical mechanics on systems with
a boundary. It is well known that two-dimensional lattice models without a boundary
are exactly solvable [1] by commuting transfer matrix methods if the local statistical
weights satisfy the celebrated Yang—Baxter equation. It has also been known for some
time, from the work of Cherednik [2] and Sklyanin [3], that this integrability extends to
vertex models defined on a strip with open boundaries provided the local boundary weights
satisfy an additional reflection equation or boundary Yang—Baxter equation. More recently,
reflection equations for interaction-round-a-face (IRF) models have been introduced [4-6],
and integrability has been established for lattice spin models defined on a strip with fixed
or more general boundary conditions.

Once integrability with a boundary has been established there are various quantities of
physical interest, such as the surface free energies and interfacial tensions, that one would
like to calculate, and methods to achieve this need to be developed. In this direction surface
free energies of the Andrews—Baxter—Forrester (ABF) models in regime 1l [7, 8], the eight-
vertex model [9], the dilute A models [10], and the cyclic solid-on-solid (CSOS) models
[11] have been obtained by an extension of the inversion relation method [12, 13] used to
calculate the bulk free energies.

In this paper we extend the analysis of [7] to obtain the surface free energy of the
ABF models in regime IV. In addition, we also extend the generalized inversion relation
method to calculate the interfacial tensions and correlation lengths. In this way we establish
that for solvable lattice models it is possible to obtain the bulk free energies, the surface
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free energies, the interfacial tensions, the correlation lengths and their associated critical
behaviours all by studying the relatively simple inversion relations.

The layout of the paper is as follows. For the rest of this section we follow [4] in
describing the ABF models with fixed boundary conditions. In sections 2 and 3 we obtain
the bulk and surface free energies. The band-structure and ground-state degeneracies of the
eigenvalue spectra of the transfer matrices are discussed in section 4. The calculations of the
interfacial tensions and correlation lengths are then given in sections 5 and 6, respectively.
We conclude with a brief discussion.

1.1. ABF models with fixed boundaries

The ABF models [14] are restricted solid-on-solid models in which heights on the sites of
the square lattice take values in the §$&t2,3, ..., L} subject to the condition that the
values of heights on adjacent sites must differdby. The Boltzmann weights depend on

a crossing parameteh = /(L + 1), and aspectral parametew. Of interest here are
regimes lll and IV, in which we have @ u < A. The nonzero face weights are given by

atl a 1A —u)
V()= ¢
a a+1) _ (91(@a— D@+ D))
W (a Fl «a ) o ( 9Z(ar) ) 1 (L) (1.2
a atl P1(ar £ u)
W (a +1 a ) - V1(ar) (1:3)

The ¢1(u) = v1(u, p) is a standard elliptic theta function with nompe The temperature
variabler = p? measures the deviation from criticality. The critical limit of the ABF models
ist — 0, approached from> 0 in regime Ill and: < 0 in regime IV. We therefore express
the nomep in terms of a real parameter> 0 as

(1.4)

e regime Il
P=Vie regime IV

so thatr = £ exp(—2r¢) andt — 0 ase — oo. The product expansions of the functions
¥ and v, are given by

o0
91(u, p) = 2p™*sinu [ [(1 - 2p* cos 2 + p*)(1 - p*) (1.5)
n=1
oo
9a(u, p) = [ [(1—2p*" Fcos 2 + p*@ D)1 - p™). (1.6)
n=1
The ¥, functions satisfy the quasiperiodicity properties
D1(u —ilnp, p) = —p~te 21y (u, p) (1.8)
and the ‘conjugate modulus’ transformations
1 2
9 , i ef(ufrr/Z) /JTEE e72u/£’ e727'[/£ 1.9
1(u ) NG ( ) (1.9)
. 1 .
l?]_(l/t, Iefjn;‘) - eljr/S ef(u+n/4)2/7rEE(eu/£’ _efjt/Zs) (110)

V2e



ABF models 2355

Ex,p=[]a-p0Q-pxHa-ph. (1.11)
n=1
Following [4] we introduce boundary weights. These weights depend on an additional
real parametek, which is independent of and may be different for the left and right
boundaries. The non-zero boundary weights are

a\) _ 1((a £ DA\ P £ £)01(u Far F &)
K(a +1 a) = —sgr(g)( 1) ) 520, . (1.12)

From the face weights and boundary weights we construct a double-row transfer matrix
D(u). For a lattice of widthN, the entry of the transfer matrix corresponding to the rows

of heightsa = {as, ...,ayy1} andb = {by, ..., by.1} is defined diagrammatically by
bl' . .bl by b3 by bN+'1. . by
hett Au P
(alD()|b) = |+ pg 2 e ra raom
u u u
a’ " ar az a3 an ans " ana
The solid heightgcy, ..., cy11} are summed over. As the boundary weights are diagonal,

we must havei; = by anday1 = by.1. Furthermore, these boundary heights, which we
will call ¢~ andaR, are fixed to the same values for all entries in the transfer matrix. The
parameterg' andzR are similarly fixed for all entries. Defined in this way, the double-row
transfer matrix exhibits the crossing symmetry

DA —u) =D(u) (1.13)

and consequently is real symmetric foreal. More importantly, however, the double-row
transfer matrices form a commuting family,

D(u)D(v) = D(v)D(). (1.14)

This implies that the eigenvectors Bfu) are independent af, so that functional equations
satisfied by the transfer matrix are also satisfied by its eigenvalues. In particular, all
eigenvalues of the transfer matrix satisfy the crossing symmetry (1.13). It should be
emphasized that all the matrices in a commuting family share the same boundary heights
at andaR, and the same values &f and&R.

To ensure that the largest eigenvalue of the double-row transfer matrix is non-degenerate
for all 0 < u < A, we impose the restriction

A
5 S 1641, 1671 < & (1.15)

and in addition require that“R > 0 whena“R = 1 and&“R < 0 whena-R = L (note
that thes-R > 0 and£-R < 0 regions are disconnected). Proof of the sufficiency of these
restrictions proceeds as follows.

We first show that all the off-diagonal elementsifu) are non-negative. Consider an
off-diagonal elementa|D(«)|b), with a andb such that{a|D(u«)|b) is not identically zero
for all u. Since the element is off-diagonal, we must haye# b; for some 2< i < N.
We use the boundary crossing relation (equation (3.8) of [4]) to replace the left boundary
weight K (. —u) with K («). This introduces a face with spectral parameter-2. and also
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a (positive) factor of#1(1)/91(2u). We then use the Yang—Baxter equation (equation (3.4)
of [4]) to push this face to the right until it separates ttie- 1)th andith pairs of faces.
The upper and lower heightls and a; differ, so from (1.1) the weight of this face is
?1(20 — 2u)/91(A), which is positive for O< u < A. Since the other face weights are
positive and since the boundary weigtkigu) are positive for O< u < min{|£%|, |R|}, the
entry (a|D(u)|b) is the sum of positive terms. The crossing symmetry (1.13) then dictates
that what holds for must hold forx —u, and since./2 < min{|&%|, |£R|}, the off-diagonal
elements oD(u) are non-negative for all & u < A.

We now observe that the elementsdfu) are bounded, so there exists a real number
M > 0 such that all elements of the matrM| + D(x) are non-negative for & u < A.

The largest eigenvalue of this matrix is non-degenerate by the Perron—Frobenius theorem,
and it follows immediately that the largest eigenvalueDdgf:) is also non-degenerate.

Indeed whenu satisfies|u — A/2] < min{|g"|, |£R|} — 1/2, the double-row transfer
matrix is non-negative definite. This is due to the fact that when each of the boundary
weightsK (1) and K (A —u) is non-negativeD(u) is expressible as the sum of non-negative
definite matrices.

Whenu = 1/2, the symmetry of the face weights is such that the model is isotropic. In
this case the values = +1./2 deserve special mention since for these choices the isotropic
model has all boundary heights fixed. This is easily seen from the definition (1.12) as,
for fixed a, only one of the choices £+ 1 gives a non-zero boundary weight. The non-
zero boundary weights then contribute only a constant factor to each entry of the transfer
matrix. Aside from this trivial factor, the lattice exhibits pure fixed boundary conditions,
with boundary heights alternating either,a + 1,a,a+1,...} or{a,a —1,a,a —1,...}.

If we divide each of the face weights b (u — A/2) and each of the boundary weights
by 91 (u — 1/2)?, then the quasiperiodicity (1.8) implies that replacingy u —i In p simply
introduces a gauge factor to each of the normalized weights. These gauge factors cancel in
the entries oD(u), so it follows that the quasiperiodicity &f(x) is that of (u— A /2)2V+4.

If we therefore define a normalized transfer matrix

D(u)

Duy= -~ 1.16
W) = = 2 j2)2N+4 (1.16)
then the entries and eigenvaluesfiih) are doubly periodic functions aof with
. . e regime Il
period rectangle= & x ire* g = _ a.17)
2¢ regime V.
In regime IV there is an additional symmetry within the period rectangle
D + /2 + ine) = D(u). (1.18)

One special case should be noted here. Wihen= 3 we also have the symmetry
D(u + 7 /2) = D(u), which, in conjunction with (1.18), implies that the quasiperiodicity of
D(u) in regime IV is the same as in regime lll. Henge= ¢ in both regimes forl. = 3.

As was shown in [4], the eigenvalues of the ABF models with fixed boundary conditions
satisfy the inversion identity

s_151Du)D(u + 1) = €"€"s_as2f_1 f1 + 55 foD *(u) (1.19)
where the functions, and f; are given by

D21(2 kA
sk:w sz(_]_)N|:

2N
P1(u + kk):| (1.20)
1 (1)

1 (D)
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The functionse- andeR depend on the left- and right-boundary conditions and, for generic
a and¢, take the form

(LR _ V1(u — §)01(u + §)01(u —§ —ar)P1(u + & +ak)

B B1(1)* '

(1.21)

The functionD*?(x) is an eigenvalue of the double-row transfer matrix at fusion leve2 1

We observe as in the periodic case that for laxgefoD>?/(f_1f1) is exponentially small

in —A/2 < Re(u) < A/2. Hence, forN large, the second term in the inversion identity
(1.19) can be neglected. So in calculating bulk and surface properties we just need to solve
the simple inversion relation

s_151DW)D(u + 1) = GLERS_2S2f_1f1 (1.22)
and the crossing relation
D) =D —u) (1.23)

subject to the appropriate analyticity and quasiperiodicity in an open strip containing
0 < Re(n) < A. These properties determine the bulk and surface quantities uniquely.

The largest eigenvaluPax(1) factorizes into contributions from the bulk, the surfaces
and the interface

Dimax(ut) ~ k()N ks(u) A (1) asN — oo. (1.24)

When the left- and right-boundary conditions favour the same phase, which is the case when
n(a, B) = 0 in the notation of section 4, there is no interface an@) = 1. When the left-

and right-boundary conditions favour different phases, which is the case m¢hefl) > 1,

there is an interface and the factorization applies to all the eigenvalues in the first band.
Clearly, the inversion and crossing relations factorize into bulk and surface terms and can
be solved sequentially for the bulk free energies, the surface free enetgieg) = 0)

and the interfacial tensiona (g, 8) > 1). This we do in the following sections.

2. Bulk free energies

Equating the bulk terms in the inversion relation (1.22) implies that the bulk partition
function per site satisfies the functional equation
1A — u)1 (A + u)

kp(u)ip(u +A) = D1 (0)2

2.1)

This equation is of course independent of the boundary conditions on the lattice and agrees
with the equation for periodic boundaries. It has been solved previously, but we include the
solution here for completeness. We use the standard techniques developed by Stroganov
[12] and Baxter [13].

Since the eigenvectors &@(u) are independent of, it follows that the eigenvalues
D(u) have the same analyticity and quasiperiodicity as the elements of the transfer matrix.
In particular, the eigenvalues must be entire functions of the spectral paramétkey are
therefore completely characterized by their zeros and growth at infinity. In regime Il the
zeros of the largest eigenvalue accumulate on the lings)Re —1/2 and Réu) = 31/2.
In addition to these lines, in regime IV zeros accumulate ouRe- (3x — 7)/2 and
Re(u) = (7 — 1)/2 in accordance with the periodicity (1.18). The stAp./2 < Re(u) <
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3A1/2 is free of orderN zeros in both regimes. This is confirmed by numerical studies for
finite N. So inside this strigy(#) is non-zero and Iry(«) is analytic. The quasiperiodicity
=20 g (1) regime 1l
=21 @2ret (1) regime IV,L > 4

implies that the second derivative ofdg(u) is periodic, with periodste*. Hence Ine,(u)
can be expanded in the form of a generalized Fourier series

kp(u +ime*) = (2.2)

Inkp(u) = Au® + Bu + Z cy € (2.3)
k=—00
To evaluate the coefficients, A and B, we take the logarithm in (2.1), expand the right-
hand side using the appropriate conjugate modulus transformations (1.9) and (1.10) and
equate coefficients.

2.1. Regime lll

In regime Il we haver > 0, so we rewrite the right-hand side of (2.1) using the conjugate

modulus transformation (1.9). With both sides of (2.1) expanded in powers ©Riehe,

we match coefficients and impose the crossing symmetry (1.23) to obtain the solution
coshfm — 210)k/e] sinh[(A — u)k/e] sinh(uk/¢)

1 o0
I iepu) = E(A —wu 2; k sinh(rk/e) cosh(Ak/¢e) ’ (2.4)

Inside the region—1/2 < Re(u) < 3i/2 this function gives the bulk behaviour of the
largest eigenvalue of the transfer matrix. Applying the Poisson summation formula to the
infinite sum gives the behaviour of the free energy in the critical limit 0". WhenL is

even Inep(u) is regular, but wherl is odd the leading-order singularity is [14]

Inkp ~ ™% Int. (2.5)
Since Ik, ~ t27%, when L is odd the bulk critical exponent is given by
b4 L+1
—g= === 2.6
T 2 (2:6)
2.2. Regime IV

In regime IV the temperature variableis negative, so we use the conjugate modulus
transformation (1.10) to rewrite the right-hand side of (2.1) in powers ofugxp. As
before, we match coefficients and use the crossing symmetry (1.23) to obtain

1 X2, coshfr/2 — 20)k /] sinh[(A — u)k/e] sinh(uk /&)
I = (-
N b (1) rrs( wu + ; k sinh(rk/2¢) cosi(Ak/¢)
N i sinh[(r/2 — 20)k /] sinh[(A — u)k/e] sinh(uk /<)

k cosi(rk/2¢) coshirk/¢e) ’

2.7)

k+3i=1
Once again we apply the Poisson summation formula to obtain the leading order singularity
[14]
2.8
(=)™ In(—1) L odd (28)
so that in regime 1V, the critical exponeatis given by (2.6) for allL.

(—1)™/? L even
In Kp ~
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3. Surface free energies

In order to calculate the surface free energies, we assume that the boundary conditions on
the left and the right edges of the lattice favour the same phase, sa(that) = 0 in the
notation of section 4. In this case there is a unique largest eigenvalue separated from the
other eigenvalues by a gap. We can then divide out the bulk quantities in the inversion
relation (1.22) to obtain an inversion relation for the surface partition function petssite
Explicitly,

Ks(U)kes(t + 1) = ﬁ;(ji - ;Z;Zigkai’;) e (w)eR(u). (3.1)
The form of this inversion relation suggests a natural factorizatiors@f) into a term
independent of the boundary conditions, a term dependent on the left-boundary condition,
and a term dependent on the right-boundary condition. We therefore write

,s(u) = kd ks W)k (). (3.2)

The solution of (3.1) proceeds in a similar fashion to the solution of the bulk inversion
relation, but whereas the analyticity ofdp(u) depended on the absence of ordereros,

the analyticity of Incs(«) depends on the absence of order one zeros. Our numerical studies
show that whem(«, 8) = O the largest eigenvalue of the double-row transfer matrix is
indeed non-zero for & Re(u) < 1. We therefore conclude that 4g(u) is analytic on this

strip and along with the quasiperiodicity

- 020 ghre’ ) regime Il
ks(u +lIme™) = 8i(A—2u) Bre* i 53
¢ 87" ies(u) regime IV,L > 4

this allows us to expand ky(u) as a generalized Fourier series.

3.1. Regime llI

In regime Il we use once again the conjugate modulus transformation (1.9) and the crossing
symmetry (1.23) to match Fourier coefficients and obtain

Inkd(u) = i(n -3
e

2. sinh[(r — 3A)k/&] sinh(Ak/e) cosh[AA — 2u)k /€]
+2kz=; k sinh(rk/e) cosh(2rk /g) (3.4)
and for generiaz: andé,
Inieg R (u) = n—lg[(ax + &) — 26) + (1&] — 207 + (2 — a®)A% + 2u(h — )]
-2 Z(COSh[(a?» +& — |EDk/¢e] coshl(w —ar — & — [E])k/e]
k=1
x COShfA — 2u)k/€]) (k sinNk/e) cosh(rk/e)) 2
>, coshfn — 20)k/€]
+2; ksinh(mk/e) (3.5)

We note that, as it should, the height reversal transformatien L + 1 —a andé — —&
leaves (3.5) unchanged.

When the Poisson summation formula is applied to the above expressionscfon)n
and InktR(u), the dominant behaviour as— 0F is seen to come from (3.4). = 2
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(mod 4, however, this term is regular and we must consider the sum in equation (3.5).
This latter sum is also regular whén> 0 with a odd and whert < 0 with a even [7],

but such exceptions aside, the leading-order singularities of the surface free energy have the
form

7/ L =0 or1(mod %
INks ~ { /% L =2 (mod 4 (3.6)
7 In ¢ L =3 (mod 4.

Since Inks ~ t?7%, the surface critical exponent; [17, 18] in regime Il is given by

_ (L+1)/2 L =2 (mod 4

2—oas= .
(L+1)/4 otherwise.

3.7)

3.2. Regime IV

In regime IV we use the conjugate modulus transformation (1.10) to match coefficients and
obtain

sinh[(zr/2 — 3X)k/e] sinh(Ak/g) cosh[ZA — 2u)k/&]

)\‘ o0
InQ(u) = 5 (1 =60 + >
k=1

k sinh(k/2¢) cosh2rk /)
X, coshfr/2 — 31)k/e] sinh(Ak/e) cosh[AN — 2u)k/¢]
+ Z k cosh(mk /2¢) cosh(20k /&) ' (3.8)

k+3=1

The form of InKSL’R(u) depends on the values afand&. When eithera < (L — 1)/2, or
L/2<a < (L+2)/2with & <0, Inkl-R(u) is given by

1
Ik Ru) = 5 L@+ 6T = 46) + (g - 2w + 22 - a®)A? + du(r — u)]

n Z coshfm/2 — 20)k /€] Z sinh[(7r /2 — 2))k /€]
k=1

k sinh(mk/2¢) T k cosh(k/2¢)
i=

- Z(coshkax + & — |E])k/e] cosh[(r/2 — ar — & — |k /€]
k=1
x coshfA — 2u)k/e]) (k sinNk/2¢) coshak/e)) ™t

— ) (coshfanr + & — [&k/e]sinh[(r/2 — ak — & — |&])k/e]
k+i=1
x coshx — 2u)k/e]) (k coshk /2¢) coshak /e)) L. (3.9)
On the other hand, when either> (L 4+ 3)/2, or L/2 < a < (L 4+ 2)/2 with & > 0,
InkL-R(u) is given by

1
Inieg R (u) = 5 L@+ 6 Gr —48) + (5] -2 — )7 + 22— a®)22 + du(r — u)]

n Z coshfm/2 — 20k /€] n Z sinh[(/2 — 20)k /€]
k=1

k sinh(mk/2¢) T k cosh(k/2¢)
i=

— “(coshr — ar — & — |&|)k/e] coshar — m/2+ & — |&])k/e]

k=1
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x coshfx — 2u)k/e]) (k sinh(k/2¢) coshiak/e)) ™2

— Y (coshfr — ar — & — |€])k/e] sinh[(ar — /2 + & — |E])k/e]

k+3=1
x COSh[A — 2u)k/€]) (k cosh(rk /2¢) coshrk /e)) 2. (3.10)

We note that once again #3(«) is unchanged under the height reversal transformation
a— L+1—aandé — —¢£.

The leading-order singular behaviour of the surface free energy is derived from the sums
in (3.8). We find

—1)"/* In(—t L =3 (mod
Inks ~ =0 " =0 ( K (3.11)
(=)™ otherwise.
Hence in regime IV we have for all
T L+1
2—(15—5 —T. (3.12)

4. Band-structure and ground-state degeneracies

In regimes lll and IV the ABF models admit a number of coexisting phases [14, 15]
corresponding to ground-state (zero temperatime—~ 1) configurations on the lattice
given by a pair(a, b) such thata — b = £1. Explicitly, the ground states consist of

a chequerboard arrangement with heighbn one sublattice and heiglat on the other
sublattice of the square lattice. At each boundary the boundary heigbgether with

the choice oft determines the favoured boundary configuration.g I 0 the favoured
boundary condition i$a,a+1,a,a+1, ...}, and if¢ < 0 the favoured boundary condition
is{a,a—1,a,a—1,...}. Clearly, the boundary condition can pick out the phase near the
boundaries. When the phase selected on the left and right boundaries is the same there will
be a unique phase and a unique ground state. However, when the phase selected by the
left boundary differs from that selected by the right boundary, there will be an interface
formed between the two coexisting phases. In this case there will be an interfacial tension,
the ground state will be highly degenerate corresponding to the many possible locations
of the interface, and the double-row transfer matrix will have a continuous band of largest
eigenvalues in the thermodynamic limit. More generally, we expect the spectrum of the
double-row transfer matrix to consist of many such continuous bands of eigenvalues. These
bands can overlap with each other but within each band the states are characterized by
a fixed number of domain walls. Furthermore, the number of eigenvalues in each band
can be determined by the simple combinatorics of counting the compatible ground-state
configurations.

4.1. Regime llI

In regime 1l there are 2 — 2 coexisting phases. The corresponding ground-state lattice
configurations are given by the pai@, ) with |a — b| = 1, and all values K a,b < L
allowed. Let us denote the left-boundary condition with height a- by a™ if £~ > 0
anda~ if €&~ < 0. Similarly, for the right boundary with heighit = a® we haveb* or

b~ depending on the sign &R. This is convenient since under the restriction (1.15) the
interfacial tensions and correlation lengths will depend only on the sigas ahd&R. The
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ground-state degeneracies for a double-row transfer matrix fe#fces with fixed boundary
heightsa andb are then given by

Aﬂa*,b+)=:Ama,b)::<(N”7J{:;fD/2) (4.1)

N@",b7) = <(N:TJ%:L%§EED/2> 4.2)

N, b = ((N"Tifjéé:lfb/z>. (4.3)
For ease of reference, we defimga, ) andn(a, 8) by

N, p) = (’:((2‘ g;) (4.4)

wherea = a* and g = b*. To see how these formulae arise, consider for simplicity an
(a™, b™) boundary height configuration with—a > 2. Moving froma to b, there must be
b—a—1 ground-state transitions (domain walls), starting with the §tate+1, a,a+1, ...}

and ending with the statge..,b — 1,b,b — 1,b}. If a andb are joined by a path oN
steps, and we letiq, mo, ..., m,_,_1 be the steps at which the transitions occur, then the
m; can take the values

m=24... ., N+a—-b+2 (4.5)
mi=mi_1+1m_1+3,... N+ta—-b+i+1 for2<i<b—-a-1 (4.6)
We rewrite and sum over these combinations using the variahlds, ..., k,_,_1 such

thatm; = 2k; +i + 1. This gives

(N+a—b)/2 (N+a—b)/2 (N+a—b)/2
Na'b)= Y 1=<

(N+b—a—ap)
k1=0 kz:kl kb—u—1=kb—z:72

b—a—1 4.7)
in agreement with (4.2). The other expressions may be derived from symmetries under the
interchange of: andb, and from the equivalence ¢, 8) with N steps and(a—1)*, B)

with N + 1 steps.

4.2. Regime IV

First considerL even. In this case there arel. 2- 4 phases, and the ground-state
configurations are as in regime Ill, with the exclusion of the/2,L/2 + 1) and
(L/2 4+ 1,L/2) pairs. In the case wheil. is odd, there are againl2— 4 phases
and the ground-state lattice configurations are as in regime Ill, except now the pairs
(L —-—1)/2,(L+1)/2) and (L + 1)/2,(L + 3)/2) are excluded and replaced by the
disordered mixturé(L + 1)/2, (L + 1)/2+ 1) where the heights on one sublattice can take
the values(L — 1)/2 and(L + 3)/2 independently at each site.

For both even and odd, we find that the number of eigenvalues in the first band is
given as follows [x| denotes the largest integer less than or equal)to

If 1 <a,b < |[(L+121)/2], excluding| (L + 1)/2]|*, the degeneracies are the same as
in regime |II.

If |(L+2)/2] <a,b< L,excluding| (L +2)/2|-, the degeneracies are the same as
in regime Il
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Otherwise, the degeneracies are

o N+la—bl—2)/2
N@t b*) = N@a.b )=(( +|a|“_b||_l )/ ) (4.8)
W _((N+la—-b+2/-2)/2
/\/(a+,b)_( BT ) (4.9)
e ((N+la—b—2—2))2
N(a,b+)_< .11 ) (4.10)

Note that when. = 3 there is only the disordered phase,nga, 8) = 0 for all « and 8.

5. Interfacial tensions

The interfacial tensiom “# between phasas = a* and g = b* is given by
—o@P = Jlim lim P rInTrA®u)"/? (5.1)

|
—00 N—o0

where
D(""ﬂ)(u)

[ D (u) D (u)] 2

and a factor of the inverse temperature has been absorbed into the definitisrfbfHere
D“® (u) denotes the maximum eigenvalue of the double-row transfer mBftfig (u).
Note that the bulk and surface contributions cancel out in the fatio. From the inversion
relation, crossing and quasiperiodicity, it follows that the eigenvalues satisfy the simple
functional equations

AwWAu+21 =1 Aw) = A — u) (5.3)
subject to the periodicity

Aw) = A*P ) = (5.2)

A A . . e regime I 5.4
@) = Au A+ Ime?) © 7 ) 2 regime IV, L > 4. (5.4
In the thermodynamic limit the eigenvalues Af() form continuous bands. In this

limit the sum in the trace of (5.1) is replaced by integrals over these bands. But in the
limit of P large only the first band of the largest eigenvalues is expected to contribute to
the interfacial tension. From the counting of degeneracies, this first band conf&ing)
eigenvalues. The largest eigenvalueDsf-? (1) has zeros which accumulate on the lines
Re(u) = —1/2 and Réu) = 31/2 in both regimes, and also on the linesRe= (3A—m)/2
and Réu) = (mr — A)/2 in regime IV. In addition, each eigenvalue in the first band of
eigenvalues oD@ (i) hasn(a, B) pairs of zeros in the strip-A/2 < Re(u) < 31/2 at

u=2xr/2+ igy k=212,...,n(x, B) (5.5)
where eachy, is real and non-zero.
We now seek a solution to the inversion relations (5.3) in the physical strip subject to
the given zeros and periodicity. The required solution is

n(a,f)
Aw) =[] @@+ ig)®w — ig) (5.6)

k=1
where
_ V1((ru/2%) — 2, 8"

= 5.7
D1(Gru/20) + 37, 1)) &

D (u)
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and

(5.8)

(L+1)/4 regime I
(L+1)/2 regime IV,L > 4.
Recall that|t| = |p?| = exp(—2re) where the nome is defined in (1.4).
In the thermodynamic limit the distribution of eagh becomes dense, yielding a density

p(d1, ..., duw.p)). SO integrating over this band of eigenvalues for real valuas iof the
interval O< u < A gives

ne* )2 ne*)2
lim TrA(u)P/ZN/ / PP, ..., Pu.p)
N—oo 0 0

n(a,B)
X 1_[ |D (@ +id)|” dor ... dppap). (5.9)
k=1

For P large this multiple integral can be evaluated by saddle-point methods. The saddle
point occurs at

utigy =r/2+ine*/2 k=12,...,n(x, B). (5.10)
Hence
94(0, [£]V) n(@p)
expl—og @A — [} = k' (|t]") P2 5.11
Pl ] Va(m /2, |1]”) ( )

wherek’ is the conjugate elliptic modulus

S n—1\ 4
K =T] (Hé:) . (5.12)
n=1 l+ p

It follows that the corresponding critical exponent is given by

L+1)/4 regime Il
g@h e p=y= | ETY g (5.13)
(L+1)/2 regime IV,L > 4.

Notice that the only way to get from the phase at one boundary to the phase at the
other is to pass through a number of intermediate phases. Indeed, it follows from (5.11)
and the definition (4.4) ot («, ) that the interfacial tensions are additive, so, for example,
if a < b in regime lll,

b—a
o@h — Zo((a+k—1)+.(a+k)+)' (5.14)
k=1

6. Correlation lengths

Let ¢(a) be a given function of the heiglat and letag anda, be two heights in the same
column separated by an even numlgeof lattice spacings. Then, at large distances, the
(truncated) pair correlation function decays exponentially with a correlation léngthen

by

(p(ao)p(ar) — (p(ao)){p(ar)) ~ exp(—L ™). (6.1)
By standard row transfer matrix arguments [1] the correlation length can be calculated from
—£7'=lim lim ¢t > A (6.2)

Jj#max



ABF models 2365

where theA;(«) are eigenvalues of
D@ (y)

D)

and thec; denotesu-independent matrix elements. The sum excludes the maximal

eigenvalue. Again the bulk and surface terms cancel out of the fatio. From the

inversion relation and crossing, it follows that the eigenvaltés) again satisfy the simple
functional equations

AWA@w+2r) =1 Aw) = AQ —u) (6.4)

subject to the previous periodicity (5.4).
In the thermodynamic limit the sum in (6.2) is dominated by the first band of

(2~ 810 = Bu) (N2/2>

eigenvalues. In this band the eigenvaluegu) are analytic in an open strip containing
0 < Re(u) < A, with two pairs of zeros at

The required solution of the inversion relation is therefore

A(u) (6.3)

2
Aw) =[] @@ +ig0) @@ —igy) (6.6)
k=1

where® (u) is given by (5.7). Passing to the thermodynamic limit for reah the interval
0 < u < 1 we obtain

we* /2 pme*/2 2
Nliinwj;axcjm(u)”% /0 /O c(¢1,¢2>£[1|<1>(u+i¢k)|€d¢>1d¢z. (6.7)

Carrying out the saddle-point analysis as before gives
exp(—§ ) = K'(r]") (6.8)
wherek’ is the conjugate elliptic modulus and hence
(L+1)/4 regime 1l
(L+1)/2 regime IV,L > 4
with the special case = 1 in both regimes whei. = 3.

It can be seen that, after allowing for differences in formulation, all of the above results
for the interfacial tensions and correlation lengths agree with the known results in the case
of the Ising model [1] L = 3) and the interacting hard square model [16]= 4). Notice
also that we have the simple relation

gl = 20120, (6.10)

The factor of two is easily understood because in the saddle-point integrals the contribution
to the inverse correlation length involves two domain walls, whereas the contribution to this
interfacial tension derives from just one such domain wall.

Finally, we note that in regime Ill the critical exponenis «s, 1 and v satisfy the
scaling relations [1,17,18]

2—a=pu+v=2w os = + . (6.11)

However, these scaling relations break down in regime 1V, since the regime IV line of exact
solution approaches the multicritical point= O at a tangent to the critical line [15, 19].

E~t]™" V= (6.9)



2366 D L O'Brien ard P A Pearce

7. Discussion

In this paper we have calculated the surface free energies, interfacial tensions and correlation
lengths of the ABF models in regimes Ill and IV, all by solving a relatively simple inversion
relation. The methods are general and can be applied to other solvable lattice models such
as the CSOS models and dilute lattice models. The methods employed here could be applied
to regimes | and Il with fixed boundary conditions where the heights alternate along the
boundary. However, in regimes | and Il, the coexisting phases are selected out by a saw-
tooth variation in the ground-state configuration [14, 15] and unfortunately these saw-tooth
variations on the boundary cannot be handled within our formalism at present. So, strictly
speaking, the current methods are best suited to systems that exhibit at most two independent
sublattices in the structure of their ground states.

Of course, the correlation length along the strip is a bulk property and not a
surface property, so its calculation should not necessitate the introduction of a boundary.
Accordingly, the generalized inversion relation method used here to obtain the correlation
length can be applied in the case of periodic boundary conditions simply by working with a
double-row transfer matri®(u) = T(u)T(A—u). Since the correlation length is independent
of the spectral parameter, and sinceD(x) and T(«) yield the same correlation length at
the isotropic pointu = 1/2, the two transfer matrices must lead to the same correlation
length for all values of:.
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