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Surface free energies, interfacial tensions and correlation
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Received 18 June 1996

Abstract. The surface free energies, interfacial tensions and correlation lengths of the
Andrews–Baxter–Forrester models in regimes III and IV are calculated with fixed boundary
conditions. The interfacial tensions are calculated between arbitrary phases and are shown to be
additive. The associated critical exponents are given by 2− αs = µ = ν with ν = (L + 1)/4
in regime III and 4− 2αs = µ = ν with ν = (L+ 1)/2 in regime IV. Our results are obtained
using general commuting transfer matrix and inversion relation methods that may be applied to
other solvable lattice models.

1. Introduction

There has been a recent convergence of interest in statistical mechanics on systems with
a boundary. It is well known that two-dimensional lattice models without a boundary
are exactly solvable [1] by commuting transfer matrix methods if the local statistical
weights satisfy the celebrated Yang–Baxter equation. It has also been known for some
time, from the work of Cherednik [2] and Sklyanin [3], that this integrability extends to
vertex models defined on a strip with open boundaries provided the local boundary weights
satisfy an additional reflection equation or boundary Yang–Baxter equation. More recently,
reflection equations for interaction-round-a-face (IRF) models have been introduced [4–6],
and integrability has been established for lattice spin models defined on a strip with fixed
or more general boundary conditions.

Once integrability with a boundary has been established there are various quantities of
physical interest, such as the surface free energies and interfacial tensions, that one would
like to calculate, and methods to achieve this need to be developed. In this direction surface
free energies of the Andrews–Baxter–Forrester (ABF) models in regime III [7, 8], the eight-
vertex model [9], the dilute AL models [10], and the cyclic solid-on-solid (CSOS) models
[11] have been obtained by an extension of the inversion relation method [12, 13] used to
calculate the bulk free energies.

In this paper we extend the analysis of [7] to obtain the surface free energy of the
ABF models in regime IV. In addition, we also extend the generalized inversion relation
method to calculate the interfacial tensions and correlation lengths. In this way we establish
that for solvable lattice models it is possible to obtain the bulk free energies, the surface
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free energies, the interfacial tensions, the correlation lengths and their associated critical
behaviours all by studying the relatively simple inversion relations.

The layout of the paper is as follows. For the rest of this section we follow [4] in
describing the ABF models with fixed boundary conditions. In sections 2 and 3 we obtain
the bulk and surface free energies. The band-structure and ground-state degeneracies of the
eigenvalue spectra of the transfer matrices are discussed in section 4. The calculations of the
interfacial tensions and correlation lengths are then given in sections 5 and 6, respectively.
We conclude with a brief discussion.

1.1. ABF models with fixed boundaries

The ABF models [14] are restricted solid-on-solid models in which heights on the sites of
the square lattice take values in the set{1, 2, 3, . . . , L} subject to the condition that the
values of heights on adjacent sites must differ by±1. The Boltzmann weights depend on
a crossing parameterλ = π/(L + 1), and aspectral parameteru. Of interest here are
regimes III and IV, in which we have 0< u < λ. The nonzero face weights are given by

W

(
a ± 1 a

a a ∓ 1

)
= ϑ1(λ− u)

ϑ1(λ)
(1.1)

W

(
a a ± 1

a ∓ 1 a

)
=
(
ϑ1((a − 1)λ)ϑ1((a + 1)λ)

ϑ2
1(aλ)

)1/2
ϑ1(u)

ϑ1(λ)
(1.2)

W

(
a a ± 1

a ± 1 a

)
= ϑ1(aλ± u)

ϑ1(aλ)
. (1.3)

The ϑ1(u) = ϑ1(u, p) is a standard elliptic theta function with nomep. The temperature
variablet = p2 measures the deviation from criticality. The critical limit of the ABF models
is t → 0, approached fromt > 0 in regime III andt < 0 in regime IV. We therefore express
the nomep in terms of a real parameterε > 0 as

p =
{

e−πε regime III

i e−πε regime IV
(1.4)

so thatt = ±exp(−2πε) and t → 0 asε →∞. The product expansions of the functions
ϑ1 andϑ4 are given by

ϑ1(u, p) = 2p1/4 sinu
∞∏
n=1

(1− 2p2n cos 2u+ p4n)(1− p2n) (1.5)

ϑ4(u, p) =
∞∏
n=1

(1− 2p2n−1 cos 2u+ p2(2n−1))(1− p2n). (1.6)

Theϑ1 functions satisfy the quasiperiodicity properties

ϑ1(u+ π, p) = −ϑ1(u, p) (1.7)

ϑ1(u− i ln p, p) = −p−1 e−2 iuϑ1(u, p) (1.8)

and the ‘conjugate modulus’ transformations

ϑ1(u, e−πε) = 1√
ε

e−(u−π/2)
2/πεE(e−2u/ε, e−2π/ε) (1.9)

ϑ1(u, i e−πε) = − 1√
2ε

eiπ/8 e−(u+π/4)
2/πεE(eu/ε,−e−π/2ε) (1.10)
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E(x, p) =
∞∏
n=1

(1− pn−1x)(1− pnx−1)(1− pn). (1.11)

Following [4] we introduce boundary weights. These weights depend on an additional
real parameterξ , which is independent ofu and may be different for the left and right
boundaries. The non-zero boundary weights are

K

(
a ± 1

a

a

)
= −sgn(ξ)

(
ϑ1((a ± 1)λ)

ϑ1(aλ)

)1/2
ϑ1(u± ξ)ϑ1(u∓ aλ∓ ξ)

ϑ2
1(λ)

. (1.12)

From the face weights and boundary weights we construct a double-row transfer matrix
D(u). For a lattice of widthN , the entry of the transfer matrix corresponding to the rows
of heightsa = {a1, . . . , aN+1} andb = {b1, . . . , bN+1} is defined diagrammatically by

〈a|D(u)|b〉 = A
A
AA

�
�
��

�
�
��

A
A
AA

a1 a1 a2 a3 aN aN+1 aN+1

b1 b1 b2 b3 bN bN+1 bN+1

c1 c2 c3 cN cN+1

u u u

λ−u λ−u λ−u

λ−u u

. . .

. . .

. . .

. . .

• • • • •

The solid heights{c1, . . . , cN+1} are summed over. As the boundary weights are diagonal,
we must havea1 = b1 andaN+1 = bN+1. Furthermore, these boundary heights, which we
will call aL andaR, are fixed to the same values for all entries in the transfer matrix. The
parametersξL andξR are similarly fixed for all entries. Defined in this way, the double-row
transfer matrix exhibits the crossing symmetry

D(λ− u) = D(u) (1.13)

and consequently is real symmetric foru real. More importantly, however, the double-row
transfer matrices form a commuting family,

D(u)D(v) = D(v)D(u). (1.14)

This implies that the eigenvectors ofD(u) are independent ofu, so that functional equations
satisfied by the transfer matrix are also satisfied by its eigenvalues. In particular, all
eigenvalues of the transfer matrix satisfy the crossing symmetry (1.13). It should be
emphasized that all the matrices in a commuting family share the same boundary heights
aL andaR, and the same values ofξL andξR.

To ensure that the largest eigenvalue of the double-row transfer matrix is non-degenerate
for all 0< u < λ, we impose the restriction

λ

2
6 |ξL |, |ξR| < λ (1.15)

and in addition require thatξL,R > 0 whenaL,R = 1 andξL,R < 0 whenaL,R = L (note
that theξL,R > 0 andξL,R < 0 regions are disconnected). Proof of the sufficiency of these
restrictions proceeds as follows.

We first show that all the off-diagonal elements ofD(u) are non-negative. Consider an
off-diagonal element〈a|D(u)|b〉, with a andb such that〈a|D(u)|b〉 is not identically zero
for all u. Since the element is off-diagonal, we must haveai 6= bi for some 26 i 6 N .
We use the boundary crossing relation (equation (3.8) of [4]) to replace the left boundary
weightK(λ−u) with K(u). This introduces a face with spectral parameter 2u−λ and also



2356 D L O’Brien and P A Pearce

a (positive) factor ofϑ1(λ)/ϑ1(2u). We then use the Yang–Baxter equation (equation (3.4)
of [4]) to push this face to the right until it separates the(i − 1)th andith pairs of faces.
The upper and lower heightsbi and ai differ, so from (1.1) the weight of this face is
ϑ1(2λ − 2u)/ϑ1(λ), which is positive for 0< u < λ. Since the other face weights are
positive and since the boundary weightsK(u) are positive for 0< u < min{|ξL |, |ξR|}, the
entry 〈a|D(u)|b〉 is the sum of positive terms. The crossing symmetry (1.13) then dictates
that what holds foru must hold forλ−u, and sinceλ/26 min{|ξL |, |ξR|}, the off-diagonal
elements ofD(u) are non-negative for all 0< u < λ.

We now observe that the elements ofD(u) are bounded, so there exists a real number
M > 0 such that all elements of the matrixMI + D(u) are non-negative for 0< u < λ.
The largest eigenvalue of this matrix is non-degenerate by the Perron–Frobenius theorem,
and it follows immediately that the largest eigenvalue ofD(u) is also non-degenerate.

Indeed whenu satisfies|u − λ/2| 6 min{|ξL |, |ξR|} − λ/2, the double-row transfer
matrix is non-negative definite. This is due to the fact that when each of the boundary
weightsK(u) andK(λ−u) is non-negative,D(u) is expressible as the sum of non-negative
definite matrices.

Whenu = λ/2, the symmetry of the face weights is such that the model is isotropic. In
this case the valuesξ = ±λ/2 deserve special mention since for these choices the isotropic
model has all boundary heights fixed. This is easily seen from the definition (1.12) as,
for fixed a, only one of the choicesa ± 1 gives a non-zero boundary weight. The non-
zero boundary weights then contribute only a constant factor to each entry of the transfer
matrix. Aside from this trivial factor, the lattice exhibits pure fixed boundary conditions,
with boundary heights alternating either{a, a + 1, a, a + 1, . . .} or {a, a − 1, a, a − 1, . . .}.

If we divide each of the face weights byϑ1(u−λ/2) and each of the boundary weights
by ϑ1(u−λ/2)2, then the quasiperiodicity (1.8) implies that replacingu by u− i ln p simply
introduces a gauge factor to each of the normalized weights. These gauge factors cancel in
the entries ofD(u), so it follows that the quasiperiodicity ofD(u) is that ofϑ1(u−λ/2)2N+4.
If we therefore define a normalized transfer matrix

D̃(u) = D(u)
ϑ1(u− λ/2)2N+4

(1.16)

then the entries and eigenvalues ofD̃(u) are doubly periodic functions ofu with

period rectangle= π × iπε∗ ε∗ =
{
ε regime III

2ε regime IV.
(1.17)

In regime IV there is an additional symmetry within the period rectangle

D̃(u± π/2+ iπε) = D̃(u). (1.18)

One special case should be noted here. WhenL = 3 we also have the symmetry
D(u+ π/2) = D(u), which, in conjunction with (1.18), implies that the quasiperiodicity of
D(u) in regime IV is the same as in regime III. Henceε∗ = ε in both regimes forL = 3.

As was shown in [4], the eigenvalues of the ABF models with fixed boundary conditions
satisfy the inversion identity

s−1s1D(u)D(u+ λ) = εLεRs−2s2f−1f1+ s2
0f0D

1,2(u) (1.19)

where the functionssk andfk are given by

sk = ϑ1(2u+ kλ)
ϑ1(λ)

fk = (−1)N
[
ϑ1(u+ kλ)
ϑ1(λ)

]2N

. (1.20)
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The functionsεL andεR depend on the left- and right-boundary conditions and, for generic
a andξ , take the form

εL,R = ϑ1(u− ξ)ϑ1(u+ ξ)ϑ1(u− ξ − aλ)ϑ1(u+ ξ + aλ)
ϑ1(λ)4

. (1.21)

The functionD1,2(u) is an eigenvalue of the double-row transfer matrix at fusion level 1×2.
We observe as in the periodic case that for largeN , f0D

1,2/(f−1f1) is exponentially small
in −λ/2 < Re(u) < λ/2. Hence, forN large, the second term in the inversion identity
(1.19) can be neglected. So in calculating bulk and surface properties we just need to solve
the simple inversion relation

s−1s1D(u)D(u+ λ) = εLεRs−2s2f−1f1 (1.22)

and the crossing relation

D(u) = D(λ− u) (1.23)

subject to the appropriate analyticity and quasiperiodicity in an open strip containing
06 Re(u) 6 λ. These properties determine the bulk and surface quantities uniquely.

The largest eigenvalueDmax(u) factorizes into contributions from the bulk, the surfaces
and the interface

Dmax(u) ∼ κb(u)
2Nκs(u)3(u) asN →∞. (1.24)

When the left- and right-boundary conditions favour the same phase, which is the case when
n(α, β) = 0 in the notation of section 4, there is no interface and3(u) = 1. When the left-
and right-boundary conditions favour different phases, which is the case whenn(α, β) > 1,
there is an interface and the factorization applies to all the eigenvalues in the first band.
Clearly, the inversion and crossing relations factorize into bulk and surface terms and can
be solved sequentially for the bulk free energies, the surface free energies (n(α, β) = 0)
and the interfacial tensions (n(α, β) > 1). This we do in the following sections.

2. Bulk free energies

Equating the bulk terms in the inversion relation (1.22) implies that the bulk partition
function per site satisfies the functional equation

κb(u)κb(u+ λ) = ϑ1(λ− u)ϑ1(λ+ u)
ϑ1(λ)2

. (2.1)

This equation is of course independent of the boundary conditions on the lattice and agrees
with the equation for periodic boundaries. It has been solved previously, but we include the
solution here for completeness. We use the standard techniques developed by Stroganov
[12] and Baxter [13].

Since the eigenvectors ofD(u) are independent ofu, it follows that the eigenvalues
D(u) have the same analyticity and quasiperiodicity as the elements of the transfer matrix.
In particular, the eigenvalues must be entire functions of the spectral parameteru. They are
therefore completely characterized by their zeros and growth at infinity. In regime III the
zeros of the largest eigenvalue accumulate on the lines Re(u) = −λ/2 and Re(u) = 3λ/2.
In addition to these lines, in regime IV zeros accumulate on Re(u) = (3λ − π)/2 and
Re(u) = (π − λ)/2 in accordance with the periodicity (1.18). The strip−λ/2 < Re(u) <
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3λ/2 is free of orderN zeros in both regimes. This is confirmed by numerical studies for
finite N . So inside this stripκb(u) is non-zero and lnκb(u) is analytic. The quasiperiodicity

κb(u+ iπε∗) =
{

ei(λ−2u) eπε
∗
κb(u) regime III

e2 i(λ−2u) e2πε∗κb(u) regime IV,L > 4
(2.2)

implies that the second derivative of lnκb(u) is periodic, with period iπε∗. Hence lnκb(u)

can be expanded in the form of a generalized Fourier series

ln κb(u) = Au2+ Bu+
∞∑

k=−∞
ck e2ku/ε∗ . (2.3)

To evaluate the coefficientsck, A andB, we take the logarithm in (2.1), expand the right-
hand side using the appropriate conjugate modulus transformations (1.9) and (1.10) and
equate coefficients.

2.1. Regime III

In regime III we havet > 0, so we rewrite the right-hand side of (2.1) using the conjugate
modulus transformation (1.9). With both sides of (2.1) expanded in powers of exp(2u/ε),
we match coefficients and impose the crossing symmetry (1.23) to obtain the solution

ln κb(u) = 1

πε
(λ− u)u+ 2

∞∑
k=1

cosh[(π − 2λ)k/ε] sinh[(λ− u)k/ε] sinh(uk/ε)

k sinh(πk/ε) cosh(λk/ε)
. (2.4)

Inside the region−λ/2 < Re(u) < 3λ/2 this function gives the bulk behaviour of the
largest eigenvalue of the transfer matrix. Applying the Poisson summation formula to the
infinite sum gives the behaviour of the free energy in the critical limitt → 0+. WhenL is
even lnκb(u) is regular, but whenL is odd the leading-order singularity is [14]

ln κb ∼ tπ/2λ ln t. (2.5)

Since lnκb ∼ t2−α, whenL is odd the bulk critical exponentα is given by

2− α = π

2λ
= L+ 1

2
. (2.6)

2.2. Regime IV

In regime IV the temperature variablet is negative, so we use the conjugate modulus
transformation (1.10) to rewrite the right-hand side of (2.1) in powers of exp(u/ε). As
before, we match coefficients and use the crossing symmetry (1.23) to obtain

ln κb(u) = 1

πε
(λ− u)u+

∞∑
k=1

cosh[(π/2− 2λ)k/ε] sinh[(λ− u)k/ε] sinh(uk/ε)

k sinh(πk/2ε) cosh(λk/ε)

+
∞∑

k+ 1
2=1

sinh[(π/2− 2λ)k/ε] sinh[(λ− u)k/ε] sinh(uk/ε)

k cosh(πk/2ε) cosh(λk/ε)
. (2.7)

Once again we apply the Poisson summation formula to obtain the leading order singularity
[14]

ln κb ∼
{
(−t)π/2λ L even

(−t)π/2λ ln(−t) L odd
(2.8)

so that in regime IV, the critical exponentα is given by (2.6) for allL.
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3. Surface free energies

In order to calculate the surface free energies, we assume that the boundary conditions on
the left and the right edges of the lattice favour the same phase, so thatn(α, β) = 0 in the
notation of section 4. In this case there is a unique largest eigenvalue separated from the
other eigenvalues by a gap. We can then divide out the bulk quantities in the inversion
relation (1.22) to obtain an inversion relation for the surface partition function per siteκs(u).
Explicitly,

κs(u)κs(u+ λ) = ϑ1(2λ− 2u)ϑ1(2λ+ 2u)

ϑ1(λ− 2u)ϑ1(λ+ 2u)
εL(u)εR(u). (3.1)

The form of this inversion relation suggests a natural factorization ofκs(u) into a term
independent of the boundary conditions, a term dependent on the left-boundary condition,
and a term dependent on the right-boundary condition. We therefore write

κs(u) = κ0
s (u)κ

L
s (u)κ

R
s (u). (3.2)

The solution of (3.1) proceeds in a similar fashion to the solution of the bulk inversion
relation, but whereas the analyticity of lnκb(u) depended on the absence of orderN zeros,
the analyticity of lnκs(u) depends on the absence of order one zeros. Our numerical studies
show that whenn(α, β) = 0 the largest eigenvalue of the double-row transfer matrix is
indeed non-zero for 06 Re(u) 6 λ. We therefore conclude that lnκs(u) is analytic on this
strip and along with the quasiperiodicity

κs(u+ iπε∗) =
{

e4i(λ−2u) e4πε∗κs(u) regime III

e8i(λ−2u) e8πε∗κs(u) regime IV,L > 4
(3.3)

this allows us to expand lnκs(u) as a generalized Fourier series.

3.1. Regime III

In regime III we use once again the conjugate modulus transformation (1.9) and the crossing
symmetry (1.23) to match Fourier coefficients and obtain

ln κ0
s (u) =

λ

πε
(π − 3λ)

+2
∞∑
k=1

sinh[(π − 3λ)k/ε] sinh(λk/ε) cosh[2(λ− 2u)k/ε]

k sinh(πk/ε) cosh(2λk/ε)
(3.4)

and for generica andξ ,

ln κL,R
s (u) = 1

πε
[(aλ+ ξ)(π − 2ξ)+ (|ξ | − 2λ)π + (2− a2)λ2+ 2u(λ− u)]

−2
∞∑
k=1

(cosh[(aλ+ ξ − |ξ |)k/ε] cosh[(π − aλ− ξ − |ξ |)k/ε]

× cosh[(λ− 2u)k/ε])(k sinh(πk/ε) cosh(λk/ε))−1

+2
∞∑
k=1

cosh[(π − 2λ)k/ε]

k sinh(πk/ε)
. (3.5)

We note that, as it should, the height reversal transformationa→ L+ 1− a andξ →−ξ
leaves (3.5) unchanged.

When the Poisson summation formula is applied to the above expressions for lnκ0
s (u)

and lnκL,R
s (u), the dominant behaviour ast → 0+ is seen to come from (3.4). IfL ≡ 2
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(mod 4), however, this term is regular and we must consider the sum in equation (3.5).
This latter sum is also regular whenξ > 0 with a odd and whenξ < 0 with a even [7],
but such exceptions aside, the leading-order singularities of the surface free energy have the
form

ln κs ∼


tπ/4λ L ≡ 0 or 1 (mod 4)

tπ/2λ L ≡ 2 (mod 4)

tπ/4λ ln t L ≡ 3 (mod 4).

(3.6)

Since lnκs ∼ t2−αs, the surface critical exponentαs [17, 18] in regime III is given by

2− αs =
{
(L+ 1)/2 L ≡ 2 (mod 4)

(L+ 1)/4 otherwise.
(3.7)

3.2. Regime IV

In regime IV we use the conjugate modulus transformation (1.10) to match coefficients and
obtain

ln κ0
s (u) =

λ

2πε
(π − 6λ)+

∞∑
k=1

sinh[(π/2− 3λ)k/ε] sinh(λk/ε) cosh[2(λ− 2u)k/ε]

k sinh(πk/2ε) cosh(2λk/ε)

+
∞∑

k+ 1
2=1

cosh[(π/2− 3λ)k/ε] sinh(λk/ε) cosh[2(λ− 2u)k/ε]

k cosh(πk/2ε) cosh(2λk/ε)
. (3.8)

The form of lnκL,R
s (u) depends on the values ofa andξ . When eithera 6 (L− 1)/2, or

L/26 a 6 (L+ 2)/2 with ξ < 0, lnκL,R
s (u) is given by

ln κL,R
s (u) = 1

2πε
[(aλ+ ξ)(π − 4ξ)+ (|ξ | − 2λ)π + 2(2− a2)λ2+ 4u(λ− u)]

+
∞∑
k=1

cosh[(π/2− 2λ)k/ε]

k sinh(πk/2ε)
+

∞∑
k+ 1

2=1

sinh[(π/2− 2λ)k/ε]

k cosh(πk/2ε)

−
∞∑
k=1

(cosh[(aλ+ ξ − |ξ |)k/ε] cosh[(π/2− aλ− ξ − |ξ |)k/ε]

× cosh[(λ− 2u)k/ε])(k sinh(πk/2ε) cosh(λk/ε))−1

−
∞∑

k+ 1
2=1

(cosh[(aλ+ ξ − |ξ |)k/ε] sinh[(π/2− aλ− ξ − |ξ |)k/ε]

× cosh[(λ− 2u)k/ε])(k cosh(πk/2ε) cosh(λk/ε))−1. (3.9)

On the other hand, when eithera > (L + 3)/2, or L/2 6 a 6 (L + 2)/2 with ξ > 0,
ln κL,R

s (u) is given by

ln κL,R
s (u) = 1

2πε
[(aλ+ ξ)(3π − 4ξ)+ (|ξ | − 2λ− π)π + 2(2− a2)λ2+ 4u(λ− u)]

+
∞∑
k=1

cosh[(π/2− 2λ)k/ε]

k sinh(πk/2ε)
+

∞∑
k+ 1

2=1

sinh[(π/2− 2λ)k/ε]

k cosh(πk/2ε)

−
∞∑
k=1

(cosh[(π − aλ− ξ − |ξ |)k/ε] cosh[(aλ− π/2+ ξ − |ξ |)k/ε]
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× cosh[(λ− 2u)k/ε])(k sinh(πk/2ε) cosh(λk/ε))−1

−
∞∑

k+ 1
2=1

(cosh[(π − aλ− ξ − |ξ |)k/ε] sinh[(aλ− π/2+ ξ − |ξ |)k/ε]

× cosh[(λ− 2u)k/ε])(k cosh(πk/2ε) cosh(λk/ε))−1. (3.10)

We note that once again lnκs(u) is unchanged under the height reversal transformation
a→ L+ 1− a andξ →−ξ .

The leading-order singular behaviour of the surface free energy is derived from the sums
in (3.8). We find

ln κs ∼
{
(−t)π/4λ ln(−t) L ≡ 3 (mod 4)

(−t)π/4λ otherwise.
(3.11)

Hence in regime IV we have for allL

2− αs = π

4λ
= L+ 1

4
. (3.12)

4. Band-structure and ground-state degeneracies

In regimes III and IV the ABF models admit a number of coexisting phases [14, 15]
corresponding to ground-state (zero temperature,|t | → 1) configurations on the lattice
given by a pair(a, b) such thata − b = ±1. Explicitly, the ground states consist of
a chequerboard arrangement with heighta on one sublattice and heightb on the other
sublattice of the square lattice. At each boundary the boundary heighta together with
the choice ofξ determines the favoured boundary configuration. Ifξ > 0 the favoured
boundary condition is{a, a+1, a, a+1, . . .}, and if ξ < 0 the favoured boundary condition
is {a, a − 1, a, a − 1, . . .}. Clearly, the boundary condition can pick out the phase near the
boundaries. When the phase selected on the left and right boundaries is the same there will
be a unique phase and a unique ground state. However, when the phase selected by the
left boundary differs from that selected by the right boundary, there will be an interface
formed between the two coexisting phases. In this case there will be an interfacial tension,
the ground state will be highly degenerate corresponding to the many possible locations
of the interface, and the double-row transfer matrix will have a continuous band of largest
eigenvalues in the thermodynamic limit. More generally, we expect the spectrum of the
double-row transfer matrix to consist of many such continuous bands of eigenvalues. These
bands can overlap with each other but within each band the states are characterized by
a fixed number of domain walls. Furthermore, the number of eigenvalues in each band
can be determined by the simple combinatorics of counting the compatible ground-state
configurations.

4.1. Regime III

In regime III there are 2L − 2 coexisting phases. The corresponding ground-state lattice
configurations are given by the pairs(a, b) with |a − b| = 1, and all values 16 a, b 6 L
allowed. Let us denote the left-boundary condition with heighta = aL by a+ if ξL > 0
and a− if ξL < 0. Similarly, for the right boundary with heightb = aR we haveb+ or
b− depending on the sign ofξR. This is convenient since under the restriction (1.15) the
interfacial tensions and correlation lengths will depend only on the signs ofξL andξR. The
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ground-state degeneracies for a double-row transfer matrix ofN faces with fixed boundary
heightsa andb are then given by

N (a+, b+) = N (a−, b−) =
(
(N + |a − b|)/2
|a − b|

)
(4.1)

N (a+, b−) =
(
(N + |a − b + 2|)/2
|a − b + 1|

)
(4.2)

N (a−, b+) =
(
(N + |a − b − 2|)/2
|a − b − 1|

)
. (4.3)

For ease of reference, we definem(α, β) andn(α, β) by

N (α, β) =
(
m(α, β)

n(α, β)

)
(4.4)

whereα = a± andβ = b±. To see how these formulae arise, consider for simplicity an
(a+, b−) boundary height configuration withb−a > 2. Moving froma to b, there must be
b−a−1 ground-state transitions (domain walls), starting with the state{a, a+1, a, a+1, . . .}
and ending with the state{. . . , b − 1, b, b − 1, b}. If a and b are joined by a path ofN
steps, and we letm1, m2, . . . , mb−a−1 be the steps at which the transitions occur, then the
mi can take the values

m1 = 2, 4, . . . , N + a − b + 2 (4.5)

mi = mi−1+ 1, mi−1+ 3, . . . , N + a − b + i + 1 for 26 i 6 b − a − 1. (4.6)

We rewrite and sum over these combinations using the variablesk1, k2, . . . , kb−a−1 such
thatmi = 2ki + i + 1. This gives

N (a+, b−) =
(N+a−b)/2∑

k1=0

(N+a−b)/2∑
k2=k1

. . .

(N+a−b)/2∑
kb−a−1=kb−a−2

1=
(
(N + b − a − 2)/2

b − a − 1

)
(4.7)

in agreement with (4.2). The other expressions may be derived from symmetries under the
interchange ofa andb, and from the equivalence of(a−, β) with N steps and((a−1)+, β)
with N + 1 steps.

4.2. Regime IV

First considerL even. In this case there are 2L − 4 phases, and the ground-state
configurations are as in regime III, with the exclusion of the(L/2, L/2 + 1) and
(L/2 + 1, L/2) pairs. In the case whenL is odd, there are again 2L − 4 phases
and the ground-state lattice configurations are as in regime III, except now the pairs
((L − 1)/2, (L + 1)/2) and ((L + 1)/2, (L + 3)/2) are excluded and replaced by the
disordered mixture((L+ 1)/2, (L+ 1)/2± 1) where the heights on one sublattice can take
the values(L− 1)/2 and(L+ 3)/2 independently at each site.

For both even and oddL, we find that the number of eigenvalues in the first band is
given as follows (bxc denotes the largest integer less than or equal tox).

If 1 6 a, b 6 b(L + 1)/2c, excludingb(L + 1)/2c+, the degeneracies are the same as
in regime III.

If b(L+ 2)/2c 6 a, b 6 L, excludingb(L+ 2)/2c−, the degeneracies are the same as
in regime III.
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Otherwise, the degeneracies are

N (a+, b+) = N (a−, b−) =
(
(N + |a − b| − 2)/2
|a − b| − 1

)
(4.8)

N (a+, b−) =
(
(N + |a − b + 2| − 2)/2
|a − b + 1| − 1

)
(4.9)

N (a−, b+) =
(
(N + |a − b − 2| − 2)/2
|a − b − 1| − 1

)
. (4.10)

Note that whenL = 3 there is only the disordered phase, son(α, β) = 0 for all α andβ.

5. Interfacial tensions

The interfacial tensionσ (α,β) between phasesα = a± andβ = b± is given by

−σ (α,β) = lim
P→∞

lim
N→∞

P−1 ln Tr Λ(u)P/2 (5.1)

where

Λ(u) = Λ(α,β)(u) = D(α,β)(u)

[D(α,α)
max (u)D

(β,β)
max (u)]1/2

(5.2)

and a factor of the inverse temperature has been absorbed into the definition ofσ (α,β). Here
D(α,α)

max (u) denotes the maximum eigenvalue of the double-row transfer matrixD(α,α)(u).
Note that the bulk and surface contributions cancel out in the ratioΛ(u). From the inversion
relation, crossing and quasiperiodicity, it follows that the eigenvalues3(u) satisfy the simple
functional equations

3(u)3(u+ λ) = 1 3(u) = 3(λ− u) (5.3)

subject to the periodicity

3(u) = 3(u+ iπε∗) ε∗ =
{
ε regime III

2ε regime IV,L > 4.
(5.4)

In the thermodynamic limit the eigenvalues ofΛ(u) form continuous bands. In this
limit the sum in the trace of (5.1) is replaced by integrals over these bands. But in the
limit of P large only the first band of the largest eigenvalues is expected to contribute to
the interfacial tension. From the counting of degeneracies, this first band containsN (α, β)
eigenvalues. The largest eigenvalue ofD(α,β)(u) has zeros which accumulate on the lines
Re(u) = −λ/2 and Re(u) = 3λ/2 in both regimes, and also on the lines Re(u) = (3λ−π)/2
and Re(u) = (π − λ)/2 in regime IV. In addition, each eigenvalue in the first band of
eigenvalues ofD(α,β)(u) hasn(α, β) pairs of zeros in the strip−λ/2< Re(u) < 3λ/2 at

u = λ/2± iφk k = 1, 2, . . . , n(α, β) (5.5)

where eachφk is real and non-zero.
We now seek a solution to the inversion relations (5.3) in the physical strip subject to

the given zeros and periodicity. The required solution is

3(u) =
n(α,β)∏
k=1

8(u+ iφk)8(u− iφk) (5.6)

where

8(u) = ϑ1((πu/2λ)− 1
4π, |t |ν)

ϑ1((πu/2λ)+ 1
4π, |t |ν)

(5.7)
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and

ν =
{
(L+ 1)/4 regime III

(L+ 1)/2 regime IV,L > 4.
(5.8)

Recall that|t | = |p2| = exp(−2πε) where the nomep is defined in (1.4).
In the thermodynamic limit the distribution of eachφk becomes dense, yielding a density

ρ(φ1, . . . , φn(α,β)). So integrating over this band of eigenvalues for real values ofu in the
interval 0< u < λ gives

lim
N→∞

Tr Λ(u)P/2 ∼
∫ πε∗/2

0
· · ·
∫ πε∗/2

0
ρ(φ1, . . . , φn(α,β))

×
n(α,β)∏
k=1

|8(u+ iφk)|P dφ1 . . . dφn(α,β). (5.9)

For P large this multiple integral can be evaluated by saddle-point methods. The saddle
point occurs at

u+ iφk = λ/2+ iπε∗/2 k = 1, 2, . . . , n(α, β). (5.10)

Hence

exp[−σ (α,β)] =
[
ϑ4(0, |t |ν)
ϑ4(π/2, |t |ν)

]n(α,β)
= k′(|t |ν)n(α,β)/2 (5.11)

wherek′ is the conjugate elliptic modulus

k′(p) =
∞∏
n=1

(
1− p2n−1

1+ p2n−1

)4

. (5.12)

It follows that the corresponding critical exponent is given by

σ (α,β) ∼ |t |µ µ = ν =
{
(L+ 1)/4 regime III

(L+ 1)/2 regime IV,L > 4.
(5.13)

Notice that the only way to get from the phase at one boundary to the phase at the
other is to pass through a number of intermediate phases. Indeed, it follows from (5.11)
and the definition (4.4) ofn(α, β) that the interfacial tensions are additive, so, for example,
if a < b in regime III,

σ (a
+,b+) =

b−a∑
k=1

σ ((a+k−1)+,(a+k)+). (5.14)

6. Correlation lengths

Let ϕ(a) be a given function of the heighta and leta0 anda` be two heights in the same
column separated by an even number` of lattice spacings. Then, at large distances, the
(truncated) pair correlation function decays exponentially with a correlation lengthξ given
by

〈ϕ(a0)ϕ(a`)〉 − 〈ϕ(a0)〉〈ϕ(a`)〉 ∼ exp(−`ξ−1). (6.1)

By standard row transfer matrix arguments [1] the correlation length can be calculated from

−ξ−1 = lim
`→∞

lim
N→∞

`−1 ln
∑
j 6=max

cj3j (u)
`/2 (6.2)
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where the3j(u) are eigenvalues of

Λ(u) = D(α,α)(u)

D
(α,α)
max (u)

(6.3)

and the cj denotesu-independent matrix elements. The sum excludes the maximal
eigenvalue. Again the bulk and surface terms cancel out of the ratioΛ(u). From the
inversion relation and crossing, it follows that the eigenvalues3(u) again satisfy the simple
functional equations

3(u)3(u+ λ) = 1 3(u) = 3(λ− u) (6.4)

subject to the previous periodicity (5.4).
In the thermodynamic limit the sum in (6.2) is dominated by the first band of

(2− δα,1+ − δα,L−)
(
N/2

2

)
eigenvalues. In this band the eigenvalues3j(u) are analytic in an open strip containing
06 Re(u) 6 λ, with two pairs of zeros at

u = λ/2± iφ1 u = λ/2± iφ2. (6.5)

The required solution of the inversion relation is therefore

3(u) =
2∏
k=1

8(u+ iφk)8(u− iφk) (6.6)

where8(u) is given by (5.7). Passing to the thermodynamic limit for realu in the interval
0< u < λ we obtain

lim
N→∞

∑
j 6=max

cj3j (u)
`/2 ∼

∫ πε∗/2

0

∫ πε∗/2

0
c(φ1, φ2)

2∏
k=1

|8(u+ iφk)|` dφ1 dφ2. (6.7)

Carrying out the saddle-point analysis as before gives

exp(−ξ−1) = k′(|t |ν) (6.8)

wherek′ is the conjugate elliptic modulus and hence

ξ ∼ |t |−ν ν =
{
(L+ 1)/4 regime III

(L+ 1)/2 regime IV,L > 4
(6.9)

with the special caseν = 1 in both regimes whenL = 3.
It can be seen that, after allowing for differences in formulation, all of the above results

for the interfacial tensions and correlation lengths agree with the known results in the case
of the Ising model [1] (L = 3) and the interacting hard square model [16] (L = 4). Notice
also that we have the simple relation

ξ−1 = 2σ (1
+,2+). (6.10)

The factor of two is easily understood because in the saddle-point integrals the contribution
to the inverse correlation length involves two domain walls, whereas the contribution to this
interfacial tension derives from just one such domain wall.

Finally, we note that in regime III the critical exponentsα, αs, µ and ν satisfy the
scaling relations [1, 17, 18]

2− α = µ+ ν = 2ν αs = α + ν. (6.11)

However, these scaling relations break down in regime IV, since the regime IV line of exact
solution approaches the multicritical pointt = 0 at a tangent to the critical line [15, 19].
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7. Discussion

In this paper we have calculated the surface free energies, interfacial tensions and correlation
lengths of the ABF models in regimes III and IV, all by solving a relatively simple inversion
relation. The methods are general and can be applied to other solvable lattice models such
as the CSOS models and dilute lattice models. The methods employed here could be applied
to regimes I and II with fixed boundary conditions where the heights alternate along the
boundary. However, in regimes I and II, the coexisting phases are selected out by a saw-
tooth variation in the ground-state configuration [14, 15] and unfortunately these saw-tooth
variations on the boundary cannot be handled within our formalism at present. So, strictly
speaking, the current methods are best suited to systems that exhibit at most two independent
sublattices in the structure of their ground states.

Of course, the correlation length along the strip is a bulk property and not a
surface property, so its calculation should not necessitate the introduction of a boundary.
Accordingly, the generalized inversion relation method used here to obtain the correlation
length can be applied in the case of periodic boundary conditions simply by working with a
double-row transfer matrixD(u) = T(u)T(λ−u). Since the correlation length is independent
of the spectral parameteru, and sinceD(u) and T(u) yield the same correlation length at
the isotropic pointu = λ/2, the two transfer matrices must lead to the same correlation
length for all values ofu.
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